Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation
نویسندگان
چکیده
Abstract In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averages and approximate the integral form of the equation in a FV scheme, we input point values and approximate the differential form of equation in a FD spirit, yet retaining very high order (fifth order in our experiment) spatial accuracy. The advantage of using point values, rather than cell averages, is to avoid the second order spatial error, due to the shearing in velocity (v) and electrical field (E) over a cell when performing the Strang splitting to the Vlasov equation. As a result, the proposed scheme has very high spatial accuracy, compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson (VP) system. We perform numerical experiments on linear advection, rigid body rotation problem; and on the Landau damping and two-stream instabilities by solving the VP system. For comparison, we also apply (1) the conservative SL FD WENO scheme, proposed in [21] for incompressible advection problem, (2) the conservative SL FD WENO scheme proposed in [20] and (3) the non-conservative version of the SL FD WENO scheme in [3] to the same test problems. The performances of different schemes are compared by the error table, solution resolution of sharp interface, and by tracking the conservation of physical norms, energies and entropies, which should be physically preserved.
منابع مشابه
A conservative high order semi-Lagrangian WENO method for the Vlasov equation
Jing-Mei Qiu and Andrew Christlieb 3 Abstract In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially nonoscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear...
متن کاملConservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations
We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual sem...
متن کاملHybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
In this paper, we propose a new conservative hybrid finite element-finite difference method for the Vlasov equation. The proposed methodology uses Strang splitting to decouple the nonlinear high dimensional Vlasov equation into two lower dimensional equations, which describe spatial advection and velocity acceleration/deceleration processes respectively. We then propose to use a semi-Lagrangian...
متن کاملConservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow
In this paper, we propose a semi-Lagrangian finite difference formulation for approximating conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes [4, 21], which approximate the advective form of the equation via direct characteristics tracing, the scheme proposed in this paper approximates the conserv...
متن کاملA semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws
For a nonlinear scalar conservation law in one-space dimension, we develop a locally conservative semi-Lagrangian finite difference scheme based on weighted essentially non-oscillatory reconstructions (SL-WENO). This scheme has the advantages of both WENO and semi-Lagrangian schemes. It is a locally mass conservative finite difference scheme, it is formally high-order accurate in space, it has ...
متن کامل